Contents lists available at ScienceDirect

Tetrahedron: Asymmetry

journal homepage: www.elsevier.com/locate/tetasy

# Catalytic asymmetric alkylation of $\alpha$ -cyanocarboxylates and acetoacetates using a phase-transfer catalyst

Kazuhiro Nagata, Daisuke Sano, Yu Shimizu, Michiko Miyazaki, Takuya Kanemitsu, Takashi Itoh\*

School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan

#### ARTICLE INFO

Article history: Received 1 September 2009 Accepted 14 October 2009 Available online 22 November 2009

### ABSTRACT

The catalytic asymmetric alkylation of  $\alpha$ -cyanocarboxylates and acetoacetates with an alkyl halide was performed under phase-transfer conditions to afford compounds which have a chiral quaternary carbon with up to 97% and 94% ee, respectively. As applications of this method, chiral 2-oxindole derivatives and a  $\beta$ -lactam derivative were synthesized.

© 2009 Elsevier Ltd. All rights reserved.

#### 1. Introduction

The stereoselective formation of a chiral carbon with all-carbon substituents is important, because a number of naturally occurring bioactive compounds and pharmaceuticals have a chiral quaternary carbon.<sup>1</sup> In order to create an all-carbon guaternary center stereoselectively, an asymmetric C–C bond-forming reaction needs to be developed. Although asymmetric alkylation is thought to be a useful and straightforward method for achieving this purpose, the steric repulsion between the carbon substituents makes the reaction difficult and challenging. Since a Merck research group reported the alkylation of phenylindanone derivative under phase-transfer conditions,<sup>2</sup> development of chiral phase-transfer catalysts (PTC) and the reactions using them has been studied extensively. As a result, several examples of alkylation, which afford an all-carbon quaternary center, have been reported<sup>3</sup> but the most commonly studied are the asymmetric alkylations of protected glycine derivatives.<sup>4</sup> In order to develop a general method for the synthesis of the compounds that have an all-carbon quaternary center, we chose substrates with an acidic methane to form a carbanion under phase-transfer conditions. It was found that the substitution reaction of  $\alpha$ -cyanocarboxylates<sup>5</sup> and acetoacetates with an alkyl halide proceeded stereoselectively in the presence of a chiral PTC. Herein, we report these results in detail.

### 2. Results and discussion

Prior to asymmetric alkylation, commercially available ethyl 2cyanopropanoate was tested for the reaction with benzyl bromide in satd Na<sub>2</sub>CO<sub>2</sub> aqueous solution/toluene using achiral tetrabutylammonium iodide as a PTC. It was found that ethyl 2-benzyl-2cyanopropanoate was obtained in 70% yield, but the reaction did

\* Corresponding author. E-mail address: itoh-t@pharm.showa-u.ac.jp (T. Itoh). not proceed without PTC. Thus we carried out the screening of chiral catalysts in the system (Table 1). Among the chiral phase-transfer catalysts, such as cinchonidine-derived catalysts **1a-c**,<sup>2,6</sup> binaphthyl derivative **2a**,<sup>7</sup> and tartrate-derived bis-ammonium salt **3**,<sup>8</sup> catalyst **2a** gave a higher ee and faster reaction rate. In the phase-transfer alkylation using catalyst 2a, the reaction rate and ee were improved further (32% ee) by using  $Cs_2CO_3$  as a base in ether solvent. Other solvents such as toluene, CH<sub>2</sub>Cl<sub>2</sub>, CHCl<sub>3</sub>, and AcOEt were also investigated, but the results were inferior to the reaction using diethyl ether as a solvent. Thus we next examined the influence of the ester group on the selectivity (Table 2). The reaction was carried out using 5 mol % of catalyst 2a and benzyl bromide (1.2 equiv) in ether/satd Cs<sub>2</sub>CO<sub>3</sub> aqueous solution at room temperature. The result was that bulky ester groups tended to give high enantioselectivity, the ee went up to 73% when t-butyl or diisopropylmethyl ester was employed. With these results, we next investigated the influence of the base on the selectivity and the yield using 2-cyanopropanoic acid *t*-butyl ester as a substrate (Table 3). Since the substrate with a *t*-butyl ester was more reluctant to hydrolysis, a base stronger than Cs<sub>2</sub>CO<sub>3</sub> was tested. The results showed that KOH and CsOH increased the reaction rate and gave higher enantioselectivity. By using a solid base, it became possible to lower the reaction temperature. When the reaction was run at -60 °C, 93% ee and an acceptable reaction rate were obtained even in the presence of 1 mol % of the catalyst (entry 5). Next the reaction with various alkyl halides was investigated (Table 4). Alkyl halides with a functional group were also revealed to react in high yields with high enantioselectivities. It was also found that the products with an opposite configuration were obtained by changing the order of introduction of alkyl substituent at the  $\alpha$ -position of cyanoacetate (entries 3 and 9). Binaphthyl-derived spiro quaternary ammonium salt 2b was found to enhance enantioselectivity further. The absolute configurations of compounds 5d and 6 were determined by derivatization to the corresponding  $\alpha, \alpha$ disubstituted- $\alpha$ -cyanoacetic acids and comparison of the specific rotations with the literature values.<sup>9</sup>





<sup>0957-4166/\$ -</sup> see front matter  $\circledcirc$  2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetasy.2009.10.018

#### Table 1

Catalyst screening for the phase-transfer asymmetric benzylation of 4



Table 2Effect of ester group on the enantioselectivity

Zheet of ester group on the chantoseree



| Entry | Compound | R            | Time (d) | %ee of <b>5</b> |
|-------|----------|--------------|----------|-----------------|
| 1     | 4a       | Et           | 1.5      | 32              |
| 2     | 4b       | Me           | 1        | 15              |
| 3     | 4c       | <i>i</i> -Pr | 1.5      | 51              |
| 4     | 4d       | t-Bu         | 7        | 73              |
| 5     | 4e       | $-CH(iPr)_2$ | 7        | 73              |

Table 3Effect of base on the phase-transfer benzylation of 4d in the presence of 2a

| Me                    | e<br>Br<br>⊳∠O <i>t-</i> Bu          | ıBr (1.2 equiv | ), <b>2a</b> (5 m | ol%) Me   |                     |  |  |
|-----------------------|--------------------------------------|----------------|-------------------|-----------|---------------------|--|--|
| NC <sup>2</sup><br>4d | 0                                    | base /E        | 20                | NC<br>5   | Sd O                |  |  |
| Entry                 | Base                                 | Temp (°C)      | Time (h)          | Yield (%) | ee of <b>5d</b> (%) |  |  |
| 1                     | aq Cs <sub>2</sub> CO <sub>3</sub> ª | rt             | 168               | Quant     | 73                  |  |  |
| 2                     | Cs <sub>2</sub> CO <sub>3</sub>      | -40            | 48                | 37        | 73                  |  |  |
| 3                     | КОН                                  | -40            | 2                 | 99        | 87                  |  |  |
| 4                     | CsOH                                 | -40            | 2                 | Quant     | 89                  |  |  |
| 5 <sup>b</sup>        | CsOH                                 | -60            | 72                | 98        | 93                  |  |  |

<sup>a</sup> A saturated aqueous solution was used.

<sup>b</sup> 1 mol % of **2a** was used.

As an application of the present method, we next carried out the synthesis of 3,3-disubstituted 2-oxindoles. 2-Oxindoles bearing a

chiral quaternary center at the 3-position have received increasing attention due to their unique biological activities and their potential as intermediates to synthesize bioactive natural products.<sup>10</sup> Thus we chose 2-bromophenylcyanoacetate 12 as a substrate, and investigated the allylation. In Table 5, the base and temperature effects on the yield and ee are shown. The reaction did not proceed at -60 °C, while the ee did not increase under -10 °C. When Et<sub>2</sub>O solvent was used in the reaction, reaction rate and ee decreased. In order to determine the absolute configuration of 13 and to confirm the availability of the chiral adduct, compound **13** was transformed to β-lactam **16** whose specific rotation was reported (Scheme 1).<sup>11</sup> After reduction of the allyl and bromo groups with HCO<sub>2</sub>NH<sub>4</sub> catalyzed by Pd/C, the cyano group was reduced with NaBH<sub>4</sub> in the presence of CoCl<sub>2</sub><sup>12</sup> and the subsequent protection of the thus-produced amino group with CbzCl afforded compound 15. Next,  $\beta$ -lactam 16 was synthesized by the subsequent removal of both the t-butyl and CBz groups followed by intramolecular condensation with dipyridyl disulfide<sup>13</sup> and PPh<sub>3</sub> in 90% yield from **15**.<sup>14</sup> By comparing the specific rotation of **16** thus obtained with that of the reported one, the absolute configuration of 16 was determined to be (R). Therefore compound 13 was found to have an (R)-configuration. Next, conversion of 13 to oxindoles was investigated (Scheme 2). Treatment of 13 with TFA followed by amidation of the resulting carboxylic acid with benzyl amine gave 17 in 88% yield. The copper-mediated intramolecular aryl amination<sup>15</sup> of **17** afforded 3,3-disubstituted chiral oxindole **18** in quantitative yield. The cyano group of 18 was shown to convert to a carboxyl group by treatment with alkaline hydrogen peroxide.16

We then investigated the chiral phase-transfer-catalyzed alkylation of acetoacetates. Also in this case, catalysts **2a** and **2b** gave higher enantioselectivity than cinchonidine-derived catalysts **1ac** (Table 6). In the reaction of entry 5, changing the base from KOH to CsOH gave almost the same result (y. 93%, 63% ee). Thus, further optimization of the reaction was carried out using KOH as a base (Table 7), and the results showed that the less polar sol-

#### Table 4

Catalytic enantioselective phase-transfer alkylation of 4 with various alkyl halides

|       |                | NC<br>4 O<br>Ct-Bu                    | R <sup>2</sup> X (<br>(1.2 equiv), (<br>Et <sub>2</sub> O, CsOH<br>-60% | catalyst F<br>(1 mol%)<br>(5 equiv)<br>C 5d, € | G-11 R <sup>2</sup><br>Ot-Bu |         |                |
|-------|----------------|---------------------------------------|-------------------------------------------------------------------------|------------------------------------------------|------------------------------|---------|----------------|
| Entry | R <sup>1</sup> | R <sup>2</sup> X                      | Cat.                                                                    | Time (h)                                       | Yield (%)                    | Product | %ee (config.)  |
| 1     | Me             | BnBr                                  | 2a                                                                      | 72                                             | 98                           | 5d      | 93( <i>R</i> ) |
| 2     | Me             | BnBr                                  | 2b                                                                      | 72                                             | 96                           | 5d      | 97( <i>R</i> ) |
| 3     | Me             | CH2=CHCH2I                            | 2a                                                                      | 72                                             | Quant                        | 6       | 89(R)          |
| 4     | Me             | CH <sub>2</sub> =CHCH <sub>2</sub> I  | 2b                                                                      | 72                                             | 90                           | 6       | 92(R)          |
| 5     | Me             | 2-(Bromomethyl)pyridine               | 2a                                                                      | 72                                             | Quant                        | 7       | 70             |
| 6     | Me             | ICH <sub>2</sub> CO <sub>2</sub> Et   | 2a                                                                      | 96                                             | Quant                        | 8       | 76             |
| 7     | Me             | ICH <sub>2</sub> CO <sub>2</sub> Et   | 2b                                                                      | 96                                             | 97                           | 8       | 85             |
| 8     | Me             | BrCH <sub>2</sub> CO <sub>2</sub> tBu | 2a                                                                      | 96                                             | Quant                        | 9       | 92             |
| 9     | Allyl          | Mel                                   | 2a                                                                      | 120                                            | 81                           | 6       | 67(S)          |
| 10    | Allyl          | BnBr                                  | 2a                                                                      | 72                                             | Quant                        | 10      | 91             |
| 11    | Allyl          | BnBr                                  | 2b                                                                      | 72                                             | Quant                        | 10      | >99            |
| 12    | Allyl          | ICH <sub>2</sub> CO <sub>2</sub> Et   | 2a                                                                      | 96                                             | Quant                        | 11      | 80             |
| 13    | Allyl          | ICH <sub>2</sub> CO <sub>2</sub> Et   | 2b                                                                      | 96                                             | Quant                        | 11      | 90             |

Table 5

Phase-transfer allylation of 12 catalyzed by 2b



| Entry          | Base       | Temp (°C) | Time | Yield (%) | ee (%) |
|----------------|------------|-----------|------|-----------|--------|
| 1              | КОН        | rt        | 2 h  | Quant     | 85     |
| 2              | CsOH       | rt        | 2 h  | Quant     | 87     |
| 3              | $Cs_2CO_3$ | rt        | 7 d  | 7         | 89     |
| 4              | CsOH       | -10       | 1 d  | Quant     | 93     |
| 5 <sup>a</sup> | CsOH       | -10       | 1 d  | Quant     | 93     |
| 6              | CsOH       | -60       | 7 d  | 0         | -      |

<sup>a</sup> 1 mol % of catalyst was used.





vent tended to give higher ee (entries 1–8). When the reaction was run at -60 °C in mesitylene containing 10% toluene which was added to lower the freezing point of mesitylene, the ee value was improved to 94% (entry 14). Based on these results, the reactions with other electrophiles were examined (Table 8).

Although mesitylene containing 10% toluene gave the best result in the case of benzylation, the solvent was not always suited for the other alkylations. When allyl iodide was subjected to the reaction using the solvent, starting material was recovered due to the reaction of allyl iodide with mesitylene (entry 4).<sup>17</sup> In the case of the reaction with allyl iodide and/or ethyl iodoacetate, Et<sub>2</sub>O gave better results than mesitylene/toluene = 9/1(entries 6 and 8). The absolute configuration of **21a** was determined as follows (Scheme 3); since the specific rotation of ethyl ester derivative **23** was reported,<sup>18</sup> ethyl ester **22** was subjected to the present reaction. As a result, compound **23** with an (*R*)-configuration was obtained with 66% ee. Product **23** was then converted to



Scheme 2. Synthesis of 2-oxindole derivatives.

Table 6 Phase-transfer benzylation of 20 catalyzed by 1a-2b Me Me Bn BnBr (1.2 equiv), PTC (5 mol%) Ot-Bu Ot-Bu KOH solid (2 equiv), Et<sub>2</sub>O, rt, 3 h ö 20 21 Entry PTC Yield (%) ee of 21 (%) 1 1a 62 0 2 1b 66 6 3 76 8 10 4 2a 60 38 2b 64 5 92

the *t*-butyl ester **21a**. The absolute configuration of **21a** prepared from **20** was determined by comparison of the retention time of chiral HPLC analysis with that of **21a** prepared from **23**. The other products **21b** and **21c** were assigned to be (R) based on the assumption that the same stereocontrol had occurred.



Scheme 3. Determination of the absolute configuration of 21a.

#### 3. Conclusion

In conclusion, we have performed the catalytic asymmetric alkylation of  $\alpha$ -cyanocarboxylates and acetoacetates using PTC, and it was demonstrated that synthetic cyanocarboxylates with a chiral quaternary carbon center were converted to an oxindole and a  $\beta$ -lactam derivative. The present method is straightforward in constructing an all-carbon quaternary center and is thought to provide facile access to the more complex compounds which have such a stereocenter. Further application of this method to the synthesis of bioactive natural products is now under investigation.

#### 4. Experimental

#### 4.1. General

Unless otherwise specified, reagents were purchased from commercial suppliers and used without further purification. Dehydrated toluene, DMSO, THF, CH<sub>2</sub>Cl<sub>2</sub>, EtOH, and MeOH were

# 4.2. General procedure for the asymmetric phase-transfer alkylation of $\alpha$ -cyanocarboxylates

A solution of *tert*-butyl 2-cyanopropanoate or *tert*-butyl 2-cyanopent-4-enoate (0.1 mmol) in Et<sub>2</sub>O (2.4 ml) was cooled at -60 °C. The PTC (**2a** or **2b**) (0.001 mmol), alkyl halide (0.12 mmol), and CsOH (75 mg, 0.5 mmol) were added to the solution. The reaction mixture was vigorously stirred for the time indicated in Table 4 and then diluted with Et<sub>2</sub>O. The organic layer was washed with H<sub>2</sub>O and brine, dried over MgSO<sub>4</sub>, and the solvents were removed by evaporation. The residue was chromatographed on silica gel (AcOEt/hexane) to give the corresponding 2-cyanocarboxylate.

#### 4.3. (R)-tert-Butyl 2-cyano-2-methyl-3-phenylpropanoate 5d

Colorless oil;  $[\alpha]_D^{25} = -14.7$  (*c* 2.00, CHCl<sub>3</sub>) (97% ee); <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  1.42 (9H, s), 1.57 (3H, s), 2.98–3.01 (1H, d, *J* = 13.7 Hz), 3.17–3.21 (1H, d, *J* = 13.4 Hz), 7.30–7.33(5H, m); <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$  24.1, 28.4, 44.3, 46.7, 83.1, 121.9, 128.5, 129.2, 130.9, 135.2, 169.2; HR-FAB MS: calcd for C<sub>15</sub>H<sub>20</sub>NO<sub>2</sub> [M+H]<sup>+</sup>: 246.1493, found: 246.1494. The ee was determined by HPLC analysis (Daicel CHI-RALCEL OJ, 2-propanol/hexane = 1:400).

#### 4.4. (R)-tert-Butyl 2-cyano-2-methylpent-4-enoate 6

Colorless oil;  $[\alpha]_D^{25} = +2.2$  (*c* 1.67, CHCl<sub>3</sub>) (92% ee); <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  1.50 (9H, s), 1.54 (3H, s), 2.47 (1H, dd, *J* = 13.8, 7.4 Hz), 2.64 (1H, dd, *J* = 13.8, 7.2 Hz), 5.22–5.26 (2H, m), 5.82 (1H, m); <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$  22.7, 27.8, 42.1, 44.2, 83.9, 120.0, 120.7, 130.9, 167.8; HR-FAB MS: calcd for C<sub>11</sub>H<sub>18</sub>NO<sub>2</sub> [M+H]<sup>+</sup>: 196.1407, found: 196.1321. The ee was determined by HPLC analysis (Daicel CHI-RALCEL OJ-H, 2-propanol/hexane = 1:400).

#### 4.5. tert-Butyl 2-cyano-2-methyl-3-pyridin-2-ylpropanoate 7

Colorless oil;  $[\alpha]_D^{25} = +8.4$  (*c* 3.45, CH<sub>2</sub>Cl<sub>2</sub>) (92% ee); <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  1.48 (9H, s) 1.65 (3H, s), 3.21 (1H, d, *J* = 14.6 Hz), 3.45 (1H, d, *J* = 14.6 Hz), 7.19 (1H, ddd, *J* = 7.6, 4.8, 1.2 Hz), 7.27 (1H, m), 7.64 (1H, td, *J* = 7.6, 2.0 Hz), 8.54 (1H, ddd, *J* = 4.9, 2.1, 0.8 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$  23.6, 27.7, 44.3, 44.9, 83.6, 120.3, 122.3, 123.8, 136.4, 149.1, 155.2, 168.0; HR-FAB MS: calcd for C<sub>14</sub>H<sub>19</sub>N<sub>2</sub>O<sub>2</sub> [M+H]<sup>+</sup>: 247.1440, found: 247.1449. The ee was determined by HPLC analysis (Daicel CHIRALCEL OJ-H, 2-propanol/hexane = 1:4).

#### 4.6. 1-tert-Butyl 4-ethyl 2-cyano-2-methylbutanedioate 8

Colorless oil;  $[\alpha]_D^{25} = +15.6$  (*c* 2.00, CHCl<sub>3</sub>) (85% ee); <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  1.28 (3H, t, *J* = 7.2 Hz), 1.52 (9H, s), 1.63 (3H, s), 2.77 (1H, d, *J* = 17.1 Hz), 2.98 (1H, d, *J* = 17.1 Hz), 4.20 (2H, q, *J* = 7.1 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$  14.1, 23.7, 27.7, 41.2, 41.6, 61.4, 84.1, 120.0, 167.4, 168.7; HR-FAB MS: calcd for C<sub>12</sub>H<sub>20</sub>NO<sub>4</sub> [M+H]<sup>+</sup>: 242.1332, found: 242.1411. The ee was determined by HPLC analysis (Daicel CHIRAL-CEL OJ-H, 2-propanol/hexane = 1:200).

#### 4.7. Di-tert-butyl 2-cyano-2-methylbutanedioate 9

Colorless oil;  $[\alpha]_D^{25} = +19.3$  (*c* 7.50, CHCl<sub>3</sub>) (92% ee); <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  1.47 (9H, s), 1.51 (9H, s), 1.60 (3H, s), 2.69 (1H, d, *J* = 16.8 Hz), 2.89 (1H, d, *J* = 16.8 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$  23.7,

#### Table 7

Phase-transfer benzylation of 20 catalyzed by 2b in various solvents



| Entry | Solvent                         | Temp (°C) | Time (h) | Yield (%) | ee of <b>21</b> (%) |
|-------|---------------------------------|-----------|----------|-----------|---------------------|
| 1     | Et <sub>2</sub> O               | rt        | 3        | 92        | 64                  |
| 2     | TBME                            | rt        | 3        | 32        | 53                  |
| 3     | THF                             | rt        | 3        | 85        | 28                  |
| 4     | CH <sub>2</sub> Cl <sub>2</sub> | rt        | 3        | 85        | 9                   |
| 5     | CH <sub>3</sub> CN              | rt        | 3        | 92        | 0                   |
| 6     | Toluene                         | rt        | 3        | 80        | 68                  |
| 7     | Xylene                          | rt        | 3        | 90        | 71                  |
| 8     | Mesitylene                      | rt        | 3        | Quant     | 69                  |
| 9     | Et <sub>2</sub> O               | -60       | 72       | 75        | 64                  |
| 10    | Toluene                         | -60       | 72       | 56        | 74                  |
| 11    | Xylene                          | -30       | 72       | 95        | 84                  |
| 12    | 10% Toluene in xylene           | -40       | 72       | 84        | 85                  |
| 13    | Mesitylene                      | -50       | 72       | 75        | 82                  |
| 14    | 10% Toluene in mesitylene       | -60       | 72       | 85        | 94                  |

#### Table 8

Phase-transfer alkylation of **20** catalyzed by **2b** 



| Entry | R-X                                  | Solvent                  | 2b (mol %) | Base | Time (h) | Yield (%) | ee of <b>21</b> (%) |
|-------|--------------------------------------|--------------------------|------------|------|----------|-----------|---------------------|
| 1     |                                      | Mesitylene/toluene = 9/1 | 5          | КОН  | 72       | 85        | 94                  |
| 2     | BnBr                                 | Et <sub>2</sub> O        | 5          | KOH  | 72       | 75        | 64                  |
| 3     |                                      | Et <sub>2</sub> O        | 1          | CsOH | 72       | 89        | 80                  |
| 4     |                                      | Mesitylene/toluene = 9/1 | 5          | КОН  | 72       | 0         | _                   |
| 5     | CH <sub>2</sub> =CHCH <sub>2</sub> I | Et <sub>2</sub> O        | 5          | KOH  | 72       | 65        | 68                  |
| 6     |                                      | Et <sub>2</sub> O        | 1          | CsOH | 72       | 84        | 78                  |
| 7     | ICH <sub>2</sub> CO <sub>2</sub> Et  | Mesitylene/toluene = 9/1 | 5          | КОН  | 96       | 70        | 23                  |
| 8     |                                      | Et <sub>2</sub> O        | 1          | CsOH | 72       | 100       | 80                  |

27.7, 28.0, 41.4, 42.6, 82.3, 83.9, 120.0, 167.5, 167.8; HR-FAB MS: calcd for  $C_{14}H_{24}NO_4$  [M+H]<sup>+</sup>: 270.1694, found: 270.1709. The ee was determined by HPLC analysis (Daicel CHIRALCEL OJ-H, 2-propanol/hexane = 1:800).

#### 4.8. tert-Butyl 2-benzyl-2-cyanopent-4-enoate 10

Colorless oil;  $[\alpha]_D^{25} = -18.1$  (*c* 1.74, CHCl<sub>3</sub>) (99% ee); <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  1.29 (9H, s), 2.47 (1H, dd, *J* = 13.6, 6.8 Hz), 2.63 (1H, dd, *J* = 13.7, 7.8 Hz), 2.96 (1H, d, *J* = 13.4 Hz), 3.09 (1H, d, *J* = 13.4 Hz), 5.17–5.21 (2H, m), 5.78 (1H, m) 7.19–7.30 (5H, m); <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$  27.7, 41.7, 42.5, 84.2, 119.0, 120.8, 127.7, 128.4, 130.1, 130.7, 134.3, 166.9; HR-FAB MS: calcd for C<sub>17</sub>H<sub>22</sub>NO<sub>2</sub> [M+H]<sup>+</sup>: 272.1621, found: 272.1662. The ee was determined by HPLC analysis (Daicel CHIRALCEL OD, 2-propanol/hexane = 1:800).

#### 4.9. 1-tert-Butyl 4-ethyl 2-cyano-2-prop-2-en-1-ylbutanedioate 11

Colorless oil;  $[\alpha]_D^{25} = +13.9$  (*c* 2.38, CHCl<sub>3</sub>) (90% ee); <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  1.25 (3H, t, *J* = 7.1 Hz), 1.48 (9H, s), 2.50 (1H, dd,

*J* = 13.7, 7.3 Hz), 2.62 (1H, dd, *J* = 13.9, 7.3 Hz), 2.72 (1H, d, *J* = 17.1 Hz), 2.96 (1H, d, *J* = 16.8 Hz), 4.16 (2H, q, *J* = 7.3 Hz), 5.20–5.26 (2H, m), 5.80 (1H, m); <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$  14.1, 27.7, 40.0, 41.2, 45.9, 61.4, 84.3, 118.5, 121.3, 130.0, 166.6, 168.7; HR-FAB MS: calcd for C<sub>14</sub>H<sub>22</sub>NO<sub>4</sub> [M+H]<sup>+</sup>: 268.1560, found: 268.1545. The ee was determined by HPLC analysis (Daicel CHIRALCEL OJ-H, 2-propanol/hexane = 1:100).

#### 4.10. tert-Butyl (2-bromophenyl)cyanoacetate 12

To a stirred solution of 2-bromophenylacetonitrile (4.02 ml, 30 mmol) in DMF (100 ml) was added NaH (60% in oil) (1.32 g, 33 mmol) slowly at 0 °C. After 5 min di-*tert*-butyl dicarbonate (10.3 ml, 45 mmol) was added, and the solution was stirred for 6 h at room temperature in Ar atmosphere. Then water was added and the mixture was extracted with CH<sub>2</sub>Cl<sub>2</sub>. The combined organic layer was washed with brine and dried over MgSO<sub>4</sub>. After the solvent was removed by evaporation, the residue was chromatographed on silica gel (AcOEt/hexane = 1/16) to give **12** (8.8 g) in 99% yield. Colorless oil: <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  1.48 (9H, s), 5.13 (1H,

s), 7.26 (1H, dt, J = 1.5, 8.0 Hz), 7.40 (1H, dt, J = 1.0, 7.6 Hz), 7.57– 7.63 (2H, m); <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$  27.7, 44.4, 85.0, 115.5, 123.9, 128.3, 129.9, 130.6, 130.7, 133.4, 162.8; HR-FAB MS: calcd for C<sub>13</sub>H<sub>15</sub>BrNO<sub>2</sub> [M+H]<sup>+</sup>: 296.0286, found 296.0283.

#### 4.11. (R)-tert-Butyl 2-(2-bromophenyl)-2-cyanopent-4-enoate 13

To a solution of 12 (29.6 mg, 0.1 mmol) in toluene (2.4 ml) cooled at -10 °C were added PTC 2b (1.1 mg, 0.001 mmol) and allyl iodide (18 µl, 0.2 mmol), then CsOH (75 mg, 0.5 mmol) was added to the solution. The reaction mixture was stirred vigorously for 1d and diluted with H<sub>2</sub>O. The mixture was extracted with CH<sub>2</sub>Cl<sub>2</sub> and the combined organic layer was washed with brine and dried over MgSO<sub>4</sub>. After the solvent was removed by evaporation, the residue was chromatographed on silica gel (AcOEt/hexane = 1/16) to give **13** in quantitative yield. Colorless oil;  $[\alpha]_D^{25} = -9.2$  (*c* 2.00, CHCl<sub>3</sub>) (93% ee); <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  1.48 (9H, s), 3.11 (1H, dd, J = 7.6, 14.0 Hz), 3.27 (1H, dd, J = 6.8, 14.0 Hz), 5.19-5.26 (2H, m), 5.78 (1H, m), 7.24 (1H, dt, *J* = 1.6, 7.6 Hz), 7.37 (1H, dt, *J* = 1.2, 8.0 Hz), 7.55 (1H, dd, J = 1.4, 8.0 Hz), 7.64 (1H, dd, J = 1.6, 8.0 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$  27.6, 39.7, 54.8, 84.7, 117.7, 120.7, 122.8, 127.7, 129.6, 130.1, 130.8, 133.9, 134.7, 165.2; HR-FAB MS: calcd for  $C_{16}H_{19}O_2NBr [M+H]^+$ : 336.0630, found: 336.0584. The ee was determined by HPLC analysis (Daicel CHIRALCEL OJ-H, 2-propanol/ hexane = 1:100).

#### 4.12. tert-Butyl 2-cyano-2-phenylpentanoate 14

To a solution of **13** (3.36 g, 10 mmol) in EtOH (25 ml) were added 10% Pd/C (1.06 g) and satd HCO<sub>2</sub>NH<sub>4</sub> aq (25 ml) under Ar atmosphere. The solution was stirred for 1 d at room temperature, and then filtered through a pad of Celite. The filtrate was evaporated to remove EtOH, and the remaining aqueous layer was extracted with CH<sub>2</sub>Cl<sub>2</sub>. The combined organic layer was washed with brine and dried over MgSO<sub>4</sub>. After the solvent was removed by evaporation, the residue was chromatographed on silica gel (AcOEt/hexane = 1/6) to give **14** (2.57 g) in 99% yield. Colorless oil: <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  0.97 (3H, t, *J* = 7.3 Hz), 1.39–1.52 (11H, m), 2.03 (1H, m), 2.31 (1H, m), 7.36–7.41 (3H, m), 7.53 (2H, d, *J* = 7.3 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$  13.8, 18.9, 27.6, 40.0, 55.0, 84.1, 118.9, 125.9, 128.5, 129.0, 135.2, 166.5; HR-FAB MS: calcd for C<sub>16</sub>H<sub>22</sub>NO<sub>2</sub> [M+H]<sup>+</sup>: 260.1651, found: 260.1659.

### 4.13. *tert*-Butyl 2-(benzyloxycarbonylaminomethyl)-2-phenylpentanoate 15

To a solution of 14 (2.57 g, 10 mmol) in EtOH (25 ml) was added 2.0 M NH<sub>3</sub> in EtOH (25 ml). Then a mixture of NaBH<sub>4</sub> (3.75 g, 100 mmol) and CoCl<sub>2</sub> (2.57 g, 20 mmol) was added slowly to the solution. The reaction mixture was stirred for 1d at room temperature and quenched with 1 M aq HCl. After the precipitate was removed by filtration, the filtrate was evaporated off. Then AcOEt was added to the residue and extracted with 1 M aq HCl. The combined aqueous layer was neutralized with NaHCO<sub>3</sub> and extracted with AcOEt. The combined organic layer was washed with brine and dried over MgSO4. After the solvent was removed by evaporation, H<sub>2</sub>O (20 ml), Na<sub>2</sub>CO<sub>3</sub> (2.07 g, 20 mmol), and CbzCl (0.88 ml, 6.2 mmol) were added and the solution was stirred for 1 d at room temperature. The reaction mixture was extracted with CH<sub>2</sub>Cl<sub>2</sub> and the combined organic layer was washed with brine and dried over MgSO<sub>4</sub>. After the solvent was removed by evaporation, the residue was chromatographed on silica gel  $(AcOEt/hexane = 1/10 \rightarrow 1/8)$  to give **15** (1.91 g) in 48% yield. Colorless oil: <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  0.92 (3H, t, *J* = 7.1 Hz), 1.26–1.27 (2H, m), 1.42 (9H, s), 1.89–1.95 (2H, m), 3.62 (1H, dd, J=4.6, 13.9 Hz), 3.82 (1H, dd, J = 7.8, 13.7 Hz), 4.89 (1H, br s), 5.28 (2H, s), 7.22–7.33 (10H, m); <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$  14.8, 17.9, 27.9, 36.9, 45.9, 55.5, 66.4, 81.5, 126.5, 126.9, 128.0, 128.0, 128.4, 128.5, 136.6, 140.9, 156.3, 173.9; HR-FAB MS: calcd for C<sub>24</sub>H<sub>32</sub>NO<sub>4</sub> [M+H]<sup>+</sup>: 398.2331, found: 398.2308.

#### 4.14. (R)-3-Phenyl-3-propylazetidin-2-one 16

Compound 15 (397 mg, 1.0 mmol) was dissolved in TFA (5 ml), and the solution was stirred for 12 h at room temperature. The reaction mixture was evaporated, and the residue was dissolved in MeOH (5 ml). Then, 10% Pd/C (106 mg, 0.10 mmol) was added to the solution and stirred for 1 d under H<sub>2</sub> atmosphere. The reaction mixture was filtered through a pad of Celite, and the filtrate was evaporated. Then MeCN (20 ml) was added, and PPh<sub>3</sub>(315 mg, 1.2 mmol) and 2,2'-dipyridyl disulufide (264 mg, 1.2 mmol) were added to the solution. The reaction mixture was stirred for 4d at 60 °C under an Ar atmosphere. After being diluted with H<sub>2</sub>O, the solution was extracted with CH<sub>2</sub>Cl<sub>2</sub>. The combined organic layer was washed with brine and dried over MgSO<sub>4</sub>. After the solvent was removed by evaporation, the residue was chromatographed on silica gel (AcOEt/hexane =  $1/4 \rightarrow 1/2 \rightarrow 1/0$ ) to give **16** (170 mg) in 90% yield. Colorless oil:  $[\alpha]_D^{25} = +56.9$  (*c* 2.00, CHCl<sub>3</sub>) (93% ee), <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  0.89 (3H, t, J = 7.6 Hz), 1.28 (1H, m), 1.44 (1H, m), 1.95 (2H, m), 3.50 (1H, d, *J* = 5.6 Hz), 3.59 (1H, d, *J* = 4.8 Hz), 5.76 (1H, br s), 7.26 (1H, m), 7.33-7.36 (2H, m), 7.40-7.43 (2H, m),  ${}^{13}$ C NMR (CDCl<sub>3</sub>)  $\delta$  14.2, 18.3, 39.9, 48.4, 64.7, 126.6, 127.0, 128.4, 140.0, 172.2; HR-FAB MS: calcd for C<sub>12</sub>H<sub>16</sub>NO [M+H]<sup>+</sup>: 190.1232, found: 190.1223.

#### 4.15. (R)-N-Benzyl-2-(2-bromophenyl)-2-cyanopent-4enamide 17

Compound 13 (34 mg, 0.1 mmol) was dissolved in TFA (1.0 ml) and stirred at room temperature for 12 h under an Ar atmosphere. The TFA was then removed by evaporation and CH<sub>2</sub>Cl<sub>2</sub> (1.0 ml) was added. The solution was cooled to 0 °C and EDC HCl (38 mg, 0.2 mmol), 1-hvdroxy-7-azabenzotriazole (27 mg, 0.2 mmol), and  $BnNH_2$  (16 µl, 0.15 mmol) were added. The reaction mixture was stirred overnight at room temperature under an Ar atmosphere. After the addition of H<sub>2</sub>O, the mixture was extracted with CH<sub>2</sub>Cl<sub>2</sub>. The organic layer was washed with brine, dried over MgSO<sub>4</sub>, and the solvents were removed by evaporation. The residue was chromatographed on silica gel (AcOEt/hexane = 1/4) to give compound **17** in 88% yield. Mp 124 °C (CH<sub>2</sub>Cl<sub>2</sub>);  $[\alpha]_D^{25} = -21.9$  (*c* 3.07, CHCl<sub>3</sub>) (93% ee); <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  3.19–3.30 (2H, m), 4.44 (1H, dd, J = 5.1, 14.8 Hz), 4.54 (1H, dd, J = 6.0, 14.8 Hz), 5.19–5.27 (2H, m), 5.75 (1H, m), 6.13 (1H, br s), 7.24-7.34 (6H, m), 7.39 (1H, t, J = 7.6 Hz), 7.61 (1H, d, J = 7.6 Hz), 7.66 (1H, d, J = 8.0 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>) & 39.6, 44.8, 54.6, 118.4, 121.2, 123.0, 127.9, 128.1, 128.8, 130.3, 130.7, 130.7, 133.2, 135.3, 136.8, 165.3; HR-FAB MS: calcd for C<sub>19</sub>H<sub>18</sub>ON<sub>2</sub>Br [M+H]<sup>+</sup>: 369.0619, found: 369.0592; Anal. Calcd for C<sub>19</sub>H<sub>17</sub>ON<sub>2</sub>Br: C, 61.80; H, 4.64; N, 7.59. Found: C, 61.78; H, 4.54; N, 7.48. The ee was determined by HPLC analysis (Daicel CHIRALCEL OJ-H, 2-propanol/hexane = 1:20).

#### 4.16. (*R*)-1-Benzyl-3-cyano-3-(prop-2-en-1-yl)-1,3dihydroindol-2-one 18

To a solution of compound **17** (44 mg, 0.11 mmol) in DMSO (1.1 ml) were added CuI (42 mg, 0.2 mmol) and CsOAc (106 mg, 0.5 mmol). The mixture was stirred for 10 h at 70 °C under an Ar atmosphere. After the addition of Et<sub>2</sub>O, the organic layer was washed with H<sub>2</sub>O and brine, and dried over MgSO<sub>4</sub>. The solvent was removed by evaporation and the residue was chromatographed on silica gel (AcOEt/hexane = 1/7) to give the compound **18** in quantitative yield. Mp 122 °C (CH<sub>2</sub>Cl<sub>2</sub>);  $[\alpha]_D^{25} = +27.3$  (*c* 5.81, CHCl<sub>3</sub>) (93% ee); <sup>1</sup>H NMR

 $(CDCl_3) \delta 2.83 (1H, dd, J = 8.4, 13.6 Hz), 3.05 (1H, dd, J = 6.4, 13.2 Hz), 4.81 (1H, d, J = 15.6 Hz), 5.02 (1H, d, J = 15.6 Hz), 5.18-5.22 (2H, m), 5.65 (1H, m), 6.78 (1H, d, J = 7.6 Hz), 7.11 (1H, t, J = 7.6 Hz), 7.26-7.33 (6H, m), 7.41 (1H, d, J = 7.2 Hz); <sup>13</sup>C NMR (CDCl_3) \delta 41.1, 44.6, 46.4, 110.1, 116.7, 122.2, 123.6, 124.5, 124.7, 127.4, 128.1, 128.9, 129.0, 130.3, 134.7, 142.2, 170.1; HR-FAB MS: calcd for C<sub>19</sub>H<sub>17</sub>ON<sub>2</sub> [M+H]<sup>+</sup>: 289.1351, found: 289.1337; Anal. Calcd for C<sub>19</sub>H<sub>16</sub>ON<sub>2</sub>: C, 79.14; H, 5.59; N, 9.72. Found: C, 79.02; H, 5.52; N, 9.75. The ee was determined by HPLC analysis (Daicel CHIRALCEL IA, 2-propanol/hexane = 1:10).$ 

### 4.17. 3-Allyl-1-benzyl-2-oxo-2,3-dihydro-1*H*-indole-3carboxylic acid 19

To a solution of **18** (290 mg, 1.0 mmol) in DMSO (10 ml) were added  $K_2CO_3$  (280 mg, 2.0 mmol) and 30% aq  $H_2O_2$  (1.02 ml, 10 mmol) at 0 °C. The solution was stirred for 1 d at room temperature, then diluted with  $H_2O_1$  and extracted with  $CH_2Cl_2$ . The organic layer was washed with brine, dried over MgSO<sub>4</sub>, and the solvents were removed by evaporation. The residue was chromatographed on silica gel (AcOEt/hexane = 1/1) to give the compound **19** (286 mg) in 93% yield.

Mp 199–200 °C (AcOEt); <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  2.88 (1H, dd, *J* = 13.4, 8.0 Hz), 2.97 (1H, dd, *J* = 13.4, 6.3 Hz), 4.84 (1H, d, *J* = 15.6 Hz), 4.94–5.07 (3H, m), 5.45 (1H, m), 6.73 (1H, d, *J* = 7.8 Hz), 7.09 (1H, m), 7.19 (1H, dt, *J* = 7.6, 1.2 Hz), 7.22–7.31 (5H, m), 7.70 (1H, m); <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$  43.3, 44.2, 58.8, 109.1, 119.9, 123.3, 126.7, 127.4, 127.9, 128.6, 128.9, 131.1, 135.5, 142.1, 169.3, 176.5; HR-FAB MS: calcd for C<sub>19</sub>H<sub>18</sub>NO<sub>3</sub> [M+H]<sup>+</sup>: 308.1287, found: 308.1284.

## 4.18. General procedure for the asymmetric phase-transfer alkylation of acetoacetates

A solution of *tert*-butyl 2-methyl-3-oxobutanoate (0.1 mmol) in Et<sub>2</sub>O or 10% toluene in mesitylene (2.4 ml) was cooled at -60 °C. Next, PTC **2b** (0.001 mmol), alkyl halide (0.12 mmol), and then base (0.4 mmol) were added to the solution. The reaction mixture was vigorously stirred for the time indicated in Table 7 and quenched with 1 M aq HCl. After the solution was diluted with AcOEt, organic layer was washed with H<sub>2</sub>O and brine, and dried over MgSO<sub>4</sub>. The solvents were removed by evaporation and the residue was chromatographed on silica gel (AcOEt/hexane) to give the corresponding 2-substituted acetoacetates.

#### 4.19. tert-Butyl 2-benzyl-2-methyl-3-oxobutanoate 21a

Colorless oil: <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  1.17 (3H, s), 1.37 (9H, s), 2.10 (3H, s), 2.98 (1H, d, *J* = 14 Hz) 3.15 (1H, d, *J* = 13.6 Hz), 7.04–7.19 (5H, m); <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$  19.1, 26.4, 27.8, 40.2, 61.3, 82.0, 126.7, 128.1, 130.3, 136.7, 171.5, 205.5; HR-FAB MS: calcd for C<sub>16</sub>H<sub>23</sub>O<sub>3</sub> [M+H]<sup>+</sup>: 263.1569, found: 263.1637. The ee was determined by HPLC analysis (Daicel CHIRALCEL IA, AcOEt/hexane = 1:11).

#### 4.20. tert-Butyl 2-acetyl-2-methylpent-4-enoate 21b

Colorless oil: <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  1.23 (3H, s), 1.41 (9H, s), 2.11 (3H, s), 2.39–2.45 (1H, m), 2.52–2.58 (1H, m), 5.03–5.04 (2H, m), 5.56–5.66 (1H, m); <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$  19.2, 26.5, 28.2, 39.6, 60.3, 82.2, 119.1, 133.2, 171.9, 205.7; HR-FAB MS: calcd for C<sub>12</sub>H<sub>21</sub>O<sub>3</sub> [M+H]<sup>+</sup>: 213.1412, found: 213.1475. The ee was determined by HPLC analysis (Daicel CHIRALCEL AD-H, 2-propanol/hexane = 1:500).

#### 4.21. 1-tert-Butyl 4-ethyl 2-acetyl-2-methylbutanedioate 21c

Colorless oil: <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  1.25 (3H, t, *J* = 7.2 Hz), 1.461 (9H, s), 1.455 (3H, s), 2.24 (3H, s), 2.81 (1H, d, *J* = 16.8 Hz), 2.87

(1H, d, *J* = 16.4 Hz), 4.11 (2H, *J* = 7.2 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$  13.7, 19.6, 25.7, 27.3, 39.5, 57.7, 60.2, 81.7, 170.3, 170.5, 204.4; HR-FAB MS: calcd for C<sub>13</sub>H<sub>23</sub>O<sub>5</sub> [M+H]<sup>+</sup>: 259.1467, found: 259.1531. The ee was determined by HPLC analysis (Daicel CHIRALCEL IA, AcOEt/hexane = 1:25).

#### Acknowledgments

This work was supported in part by Grants-in-Aid for Scientific Research and the High-Technology Research Center Project from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

#### References

- For reviews, see: (a) Christoffers, J.; Baro, A. Adv. Synth. Catal. 2005, 347, 1473– 1481; (b) Peterson, E. A.; Overman, L. E. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 11943–11948; (c) Douglas, C. J.; Overman, L. E. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5363–5367; (d) Denissova, I.; Barriault, L. Tetrahedron 2003, 59, 10105– 10146; (e) Christoffer, J.; Baro, A. Angew. Chem., Int. Ed. 2003, 42, 1688–1690; (f) Christoffer, J.; Mann, A. Angew. Chem., Int. Ed. 2001, 40, 4591–4597; (g) Bella, M.; Gasperi, T. Synthesis 2009, 1583–1614.
- Dolling, U.-H.; Davis, P.; Grabowski, E. J. J. J. Am. Chem. Soc. 1984, 106, 446– 447.
- (a) Bella, M.; Kobbelgaard, S.; Jørgensen, K. A. J. Am. Chem. Soc. 2005, 127, 3670-3671; (b) Ooi, T.; Miki, T.; Taniguchi, M.; Shiraishi, M.; Takeuchi, M.; Maruoka, K. Angew. Chem., Int. Ed. 2003, 42, 3796–3798; (c) Manabe, K. Tetrahedron Lett. 1998, 39, 5807–5810; (d) Park, E. J.; Kim, M. H.; Kim, D. Y. J. Org. Chem. 2004, 69, 6897–6899; (e) Nerinckx, W.; Vandewalle, M. Tetrahedron: Asymmetry 1990, 1, 265–276; (f) Lee, T. B. K.; Wong, G. S. K. J. Org. Chem. 1991, 56, 872–875; (g) Ooi, T.; Miki, T.; Fukumoto, K.; Maruoka, K. Adv. Synth. Catal. 2006, 348, 1539–1542; (h) Hashimoto, T.; Sakata, K.; Maruoka, K. Angew. Chem., Int. Ed. 2009, 48, 5014–5017; (i) Nibbs, A. E.; Baize, A.-L.; Herter, R. M.; Scheidt, K. A. Org. Lett. 2009, 11, 4010–4013.
- For reviews, see: (a) Ooi, T.; Maruoka, K. Angew. Chem., Int. Ed. 2007, 46, 4222– 4266; (b) O'Donnel, M. J. Acc. Chem. Res. 2004, 37, 506–517; (c) Maruoka, K.; Ooi, T. Chem. Rev. 2003, 3013–3028.
- A preliminary communication: Nagata, K.; Sano, D.; Itoh, T. Synlett 2007, 547– 550.
- 6. Lygo, B.; Wainwright, P. G. Tetrahedron Lett. **1997**, 38, 8595–8598.
- (a) Ooi, T.; Takeuchi, M.; Kameda, K.; Maruoka, K. J. Am. Chem. Soc. 2000, 122, 5228–5229; (b) Ooi, T.; Taniguchi, M.; Kameda, M.; Maruoka, K. Angew. Chem., Int. Ed. 2002, 41, 4542–4544.
- Ohshima, T.; Shibuguchi, T.; Fukuta, Y.; Shibasaki, M. Tetrahedron 2004, 60, 7743–7754.
- (a) Badorrey, R.; Cativiela, C.; Díaz-de-Villegas, M. D.; Gálves, J. A. Tetrahedron: Asymmetry 2003, 14, 2201-2207; (b) Badorrey, R.; Cativiela, C.; Díaz-de-Villegas, M. D.; Gálves, J. A.; Lepeña, Y. Tetrahedron: Asymmetry 1997, 8, 311-317.
- (a) Cheng, L.; Liu, L.; Jia, H.; Wang, D.; Chen, Y.-J. J. Org. Chem. 2009, 74, 4650–4653; (b) Movassaghi, M.; Schmidt, M. A.; Ashenhurst, J. A. Org. Lett. 2008, 10, 4009–4012; (c) Tian, X.; Jiang, K.; Peng, J.; Du, W.; Chen, Y.-C. Org. Lett. 2008, 10, 3583–3586; (d) Galliford, C. V.; Scheidt, K. A. Angew. Chem., Int. Ed. 2007, 46, 8748–8758; (e) Trost, B. M.; Zhang, Y. J. Am. Chem. Soc. 2007, 129, 14548–14549; (f) Trost, B. M.; Zhang, Y. J. Am. Chem. Soc. 2006, 128, 4590–4591; (g) Huang, A.; Kodanko, J. J.; Overman, L. E. J. Am. Chem. Soc. 2004, 126, 14043–14053.
- 11. Cativiela, C.; Díaz-de-Villegas, M. D.; Gálves, J. A. J. Org. Chem. **1994**, 59, 2497–2505.
- 12. Satoh, T.; Suzuki, S.; Suzuki, Y.; Miyaji, Y.; Imai, Z. Tetrahedron Lett. 1969, 10, 4555–4558.
- Kobayashi, S.; Iimori, T.; Izawa, T.; Ohno, M. J. Am. Chem. Soc. 1981, 103, 2406– 2408.
- 14. Hydrogenation of the cyano group by the reported method<sup>11</sup> using rhodium on alumina in 1% ammonia in EtOH did not take place and resulted in the recovery of **14**. The direct conversion of the  $\beta$ -amino ester, which was obtained by reduction of cyano group, to the  $\beta$ -lactam failed.
- 15. Yamada, K.; Kurokawa, T.; Tokuyama, H.; Fukuyama, T. J. Am. Chem. Soc. 2003, 125, 6630–6631.
- 16. When hydrolysis was carried out with  $H_2SO_4$  in 1,4-dioxane/ $H_2O$ , carboxylic acid **19** was obtained in 60% yield.
- 17. When a mixture of mesitylene and allyl iodide was stirred for 1 day at rt, many TLC spots were observed and allyl iodide was not detected by measurement with <sup>1</sup>H NMR.
- (a) Tanaka, M.; Oba, M.; Tamai, K.; Suemune, H. J. Org. Chem. 2001, 66, 2667–2673; (b) Tomioka, K.; Ando, K.; Takemasa, I.; Koga, K. J. Am. Chem. Soc. 1984, 106, 2718–2719.